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Joint position sensors are necessary for most robot 
control systems. A single position sensor failure in a 
normal robot system can greatly degrade performance. 
This paper presents a method to obtain position 
information from Cartesian accelerometers without 
integration. Depending on the number and location of 
the accelerometers. the proposed system can tolerate the 
loss of multiple position sensors. A solution technique 
suitable for real-time implementation is presented. 
Simulations were conducted using 5 triaxial 
accelerometers to recover from the loss of up to 4 joint 
position sensors on a 7 degree of freedom robot moving 
in general three dimensional space. The simulations 
show good estimation performance using non-ideal 
accelerometer measurements. 
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I.I" 

Fault tolerant control in robot systems has been an active 
research area in he past few  year^'.^.^*^. The research has 
been driven by the need for robots to work reliably in space 
and nuclear environments where human intervention is 
difficult. Robot failure can be classified into three 
categories: actuator failure, sensor failure, and task failure. 
Sensor and actuator failures involve the failure of a 
physical device in the robot system. Task failure occurs 
when a fully operational robot is not able to complete the 
desired task due to control errors or unexpected problems in 
the task. This paper will concentrate on the recovery of 
joint position sensor failures. 

Fault tolerance to joint position sensor failures has been 
achieved by several techniques. The primary method used 
in robust robot design is the inclusion of redundant 
position sensors. The redundant sensor's output is 
compared with the primary sensor's output to detect 
failures and, during failure, is used instead of the primary 
sensor's output. The addition of the redundant sensor 
usually affects joint design. Another technique involves 

tracking the end-effector with a camera or other sensor. If 
the end effector pose can be determined by external means, 
a joint position error that affects the end-effector position 
can be detected and feedback signals generated to continue 
position control. End- effector tracking is very difficult in 
unstructured environments and is usually done at an update 
rate less than the joint servo loops require. Kinematically 
redundant robots are also employed, not only for their 
enhanced dexterity, but for their ability to freeze a failed 
joint and continue satisfactory operation. This solution is 
expensive and satisfactory operation can depend on the 
joint which fails, the kinematic configuration of the robot, 
and the trajectory desired. The problems inherent in the 
three position sensor failure recovery mehods discussed 
make it difficult for an existent robot design to be made 
fault tolerant LO position sensor failure. 

Accelerometers have been used previously in robot control 
in three main areas: flexibility control5, system 
identification6, and runaway detection7. Runaway detection 
is the only application that is related to fault tolerant 
control. Possible inkpation based techniques lo obtain 
Cartesian position from Cartesian acceleration are prone to 
bias errors. Until the recent development of small 
accelerometers, addition of accelerometers to a robot design 
was not trivial. As a result, the utiliiy of acceleromeler 
based control was limited in rigid robot systems. 

The application of accelerometers in fault tolerance was 
expanded to joint position sensor fault tolerance'. This 
method used two triaxial accelerometers to determine the 
position of a robot joint without integration or inverse 
kinematics. While useful to protect a particular joint 
sensor, the number of accelerometers required to protect 
multiple joints in the robot arm can be impractical. 

This paper proposes a system wide approach to position 
sensor fault tolerance. A combination of end effector 
mounted and link mounted accelerometers can be used to 
determine the position of multiple joints in a robot 
system. The accelerometers can be located in a manner 
to provide fault tolerance to any joint in the robot 
system. 



2. KINEMATIC EOUATIONS 

The proposed solution method is designed for an n 
revolute joint, rigid link robot system with m triaxial 
accelerometers mounted at various locations on the 
robot. A robot of this kinematic configuration is 
governed by the following kinematic equations: 

where 
0; 
a: 
H/+' 

0, position of i" joint 
hi,!:: acceleration of accelerometer Am,.,, in the 

(i+I)* frame 
pmi+, vector offset from joint i + l  to 

accelerometer h&' 

fi  vector offset from joint i to joint i + l  in the 
frame i 

2 identity z vector [O 0 1IT 

angular velocity of i" link in i* frame 
acceleration of i" link in i* frame 
rotation mamx from i" frame to (i+l)" 
frame 

Given the Devanit-Hartenberg paramete?, a,, the 3x3 
rotation matrix, RP' ,  is shown below. 

1  COS^,,^ cosai sin8i+1 Sinai 
R F ~  = COSei+l cosai cos8i+1 Sinai (5) [ 0 -S ina i  cos ai 

Each accelerometer contains information on the 
position, velocity, and acceleration of joints preceding 
the accelerometer in the kinematic chain. End-effector 
mounted accelerometers contain information about all 
joints. However, this information is mixed together in 
a nonlinear fashion. Except for accelerometers attached 
to the first joint. there is no single acceleration that is, 
in general. dependent on solely the position, velocity, or 
acceleration of the i" joint. In addition, components of 
the acceleration due to certain joints can dominate due 
to kinematic configuration or trajectory. For certain 
configurations, the end-effector pose does not uniquely 
determine the joint trajectory of the robot. As a result, 
only utilizing end-effector mounted accelerometers is not 

sufficient for determining joint trajectories. Distributing 
accelerometers along the arm in addition to end-effector 
mounled accelerometers can help alleviate these 
problems by obtaining information at points closer to 
joints of interest. 

The proposed solution method utilizes the distributed 
Cartesian accelerometers in conjunction with any 
working joint position sensors to recover a lost position 
sensor. This is done by calculating a knot point, a 
point in the trajectory having position, velocity, and 
acceleration, that will make the measured accelerations 
match the accelerations determined by Eq. (4). In Eq. 
(4), the data from the operational joint sensors is used to 
the extent possible, leaving only terms involving the 
failed joints, 

Q(e,,b, , 6 j )  = A ,  j ~b (6) 
where, 

b is the set of failed joints 
A is the vector of accelerometer 

Q is a set of equations of type (4) 
measurements [ Am,' . . . ~ml lT 

corresponding to A 

If r is the number of failed joints, then the resulting 
system has 3m nonlinear equations (one equation per 
axis, three axes per accelerometer) in 3r (position, 
velocity, and acceleration of failed joints) unknowns. If 
this system is solvable, then the knot points for all r 
joints can be determined and the joints controlled. 

A minimum criteria for solution is that there be at least 
as many equations as unknowns, i.e. rn 2 r . If this 
condition is not satisfied, then the minimum error 
solution will be one using least squares. Due to the 
complexity of the equations, this condition is 
optimistic. As r approaches m, the system becomes 
more ill-conditioned. A better measure of predicted 
system performancc will be discussed lam. 

The method discussed also relies on the existence of a 
known acceleration field, usually gravity. This field 
provides a known, constant excitation to the system 
accelerometers. The solution method can be applied to 
systems without such a field. but positions will be 
relative, not absolute, and drift due LO small errors is 
likely. The accelerometers must be of the instrument 
type that can detect constant accelerations. 

The solution method requires a computational technique 
for solving a system of nonlinear equations. To be 
practical, the solution must be calculable in real-time. 



Real time in this sense implies updates at a rate fast 
enough for stable joint control. This requirement limits 
the available solution techniques. The solution 
technique must also be robust to sensor noise and bias. 
The convergence of the technique to a good solution 
must be predictable. Traditional nonlinear solution 
techniques can be applied to this problem. Some, such 
as steepest descent". were found to be too sensitive to 
sensor error. Others, such as nonlinear least squares", 
gave excellent results but were too time consuming for 
real-time implementation. A new method, continuation 
minimax, is developed as a compromise between 
solution accuracy and suitability for real-time 
implementation. 

4. CONTINUATION MINIM AX 

This method is a combination of the continuation 
method'213 and the minimax The classical 
continuation method is based on using sequential linear 
programming to optimize a nonlinear function based on 
nonlinear criteria. In this formulation, F is the function 
to be optimized, P is the vector of optimization 
parameters, P ,  is the current approximation of the 
optimal solution, J,  is the gradient of the constraint 
function, c. and JF is the gradient of the optimization 
function. Placed into a linear programming problem: 

Minimize A F =  JgAP (7) 

Where 1, is the 3mx3m identity matrix. The parameter 
A, controls the amount of change allowed in M. The 
bound is heuristically changed depending on a 
comparison of the decrease in the function c and the 
linearized version. If the ratio of the two is small: 

then Aa+,=A0/4. If the ratio is large: 

then Aa+,=2Aa, otherwise Aa+,=Aa. The minimax 
solution is iterated until a desired value of yis achieved 
or only a minimal change in yis produced. 

The proposed computational procedure. continuation 
minimax, is a combination of both techniques. The 
rationale behind the combination is to capitalize on the 
predictable solution time, determined by Aa,  of the 
continuation method and the ability of the minimax 
algorithm to find the minimal error between the true 
c(P') and the approximated c(P$. 

In Linear programming form, the continuation minimax 
formulation is: 

m 

Minimize F = x  y,  
i=l  

subject to 
subject to: 

The quantity a ranges from 0 to 1 in increments of Aa.  
The step size controls the accuracy of the approximation 
of the optimum P, i.e. P'. The next approximation of 
P', which is Pa+AP, leads to a betler approximation of 
the optimal F, i.e. F'. 

The minimax solution technique also uses linear 
programming. The object of the minimax solution is to 
find the maximum of the minimum error, ybetween the 
calculated constraint equations and the desired value of 
the constraints: 

Mini nli ze y (9) 

subject to 

The bound A, is adjusted as in the minimax 
formulation. 

Reasons for some of the differences between existing 
methods and the new continuation minimax formulation 
are: 

0 The function F was linear, so it was used instead 
of a linearized version 
The quantity a ranges from 0 to 1 in increments 
A a  as before, but is used explicitly in the iteration 
to allow for h e  combination of methods 
The summation of several 'yi was chosen over only 
y for better performance during sensor error. With 



low sensor error, a formulation using only y is 
also possible and would further decrease 
computational requirements. 
An upper and lower bound, Eqs. (15) and (16). are 
required because ideally x=O Vi. An upper or 
lower bound alone would not reduce to this 
condition at the ideal case. 

0 

For specific application to the position sensor fault 
tolerance problem, c=Q(P,)-A. Pa is [e, 6, e,] (the 
joint position. velocity, and acceleration), and J ,  is the 
gradient of c with respect P. 

The continuation minimax method has an accuracy and 
an execution time that is controlled by the choice of 
Aa. Other solution techniques, under certain 
conditions, may obtain a more optimal solution quicker. 
The primary advantage of the continuation minimax 
solution technique is its ability to give a solution M the 
problem in a predictable execution time. This 
predictability is a requirement for real-time 
implementation. 

5 .  GRADIENT CALCmATION 

Most nonlinear solution methods require a function 
gradient for rapid convergence. In this application, the 
continuation minimax solution method requires J,. the 
gradient of c. The gradient of c is equal to the gradient 
of Q. The closed-form solution for J ,  for an n link 
manipulator becomes more complex quickly as n grows. 
The gradient could be computed numerically using finite 
differences16. Finite differences are not as accurate as a 
closed-form solution. The approach taken here is to 
calculate the gradient recursively. The system equations 
are dcsigned to be calculated recursively, so he proper 
application of partial derivatives and the chain rule will 
lead to the desired outcome. 

The desired gradient has the form: 

For simplicity, the measurement Ami is always in the 
i*frame. Now. 

The partial derivative will be zero for all quantities of 
joint k where k > i + l .  This a consequence of the later 
joints not affecting the previous links. 

Equations (20),(21),and (22) are not recursive 
themselves, but the equations for h e  partials they 
depend on are recursive. The equations require that Eqs. 
(1) through (3) be calculated for all n links to determine 
the angular velocities, angular accelerations, and 
Cartesian accelerations. The partial derivatives can then 
be calculated in the following manner: 

I 

Vk 



where, 

 cos^,, -sinq+l cosa, -sin81,1 sinq (32) 
-sinO,+l cosq,, cosa, cosOI+l sing 1 0 0 

is the derivative of Rp' with respect to O;,,. 

R , l + l  = 

Using Eqs. (20) through (32). the elements of the 
gradient can be calculated. The previous equations have 
been verified against numerically calculated gradients of 
Q .  

MULATION 

Simulations were conducted to verify the solution method 
presented in the previous sections. A Robotics Research 
807i manipulator was simulated using Matlab and 
Simulink numerical simulation software. The 807i is a 
0.8m long robot with seven revolute joints. The full 7 

DOF configuration, as shown in Fig. 1. was implemented 
and tested in general 6 DOF space. Two triaxial 
accelerometers were attached to the end-effector and one 
triaxial accelerometer was attached to joints 2,4, and 6. 

Accelerometer Locatlons 
yy 

I 

Join1 Locations 

Figure 1: Robot diagram 

Trajectories were generated using a standard 3-5-3 
trajectory generation algorithm[9]. The desired trajectory 
starting and ending positions were [ 1.1 0.2 -0.3 0.4 - 1.5 
0.6 0.71 radians and [ O S  -0.3 0.0 0.2 -0.2 0.0 1.41 
radians respectively. The trajectory was to be completed 
in 1.0 second followed by 0.7 second of zero velocity 
and acceleration command. This rather fast move would 
show the resilience of the method to dynamic effects. 
The calculated positions were not used as feedback to the 
position controller. A very low tracking accuracy 
controller was used in the system to show that precise, 
smooth trajectory following is not required by the 
solution method. This low precision controller 
accounted for the need for a 0.7 second settling period 
after the command was completed. 

5,l Performance Tests 

To verify the method, a nonlinear least squares 
algorithm was used with ideal sensor data. Join6 2,3 ,  
5, and 6 were assumed to have failed joint sensors. The 
maximum position error produced was 8 ~ 1 0 . ~  radians. 
Assuming ideal data, this maximum error could be 
further reduced by changing the tolerance of the 
algorithm. To maintain the tolerances that this 
algorithm produced, a large number of function and 
gradient calls were required in addition to the overhead of 
the solution method. The subroutine calls required are 
plotted in Fig. 2. Although the number of subroutine 
calls is lower if the desired solution tolerance is lowered, 
the number of calls is unpredictable. During error 
spikes, the tolerance may not be achievable, causing 



difficulty for the solution algorithm unless properly 
handled. 

rm ( . m . d )  

Figure 2: Number for function and gradient evaluations 
for Nonlinear Least Squares simulation. (Number of 
function evaluations is solid line) 

Now, The response of the continuation minimax is 
analyzed with realistic sensor conditions. 
Accelerometers are susceptible to several error types: 
bias, noise, and placement error. The bias and noise can 
be caused by temperature, off axis accelerations, 
amplifier noise. vibration, or many other causes. Since 
the accelerometers must be placed at different points on 
the arm, small errors between their specified and actual 
positions are possible. 

The primary usage of this technique is to continue 
operation after sensor failure without external 
calibration. Between the time a sensor failure occurs and 
when it is detected, an error will accumulate. All 
nonlinear optimization methods can converge to an 
"optimal" solution that is not the desired solution. 
While it is maintained that given a position reasonably 
close to the actual position the optimal solution will be 
the desired solution, higher numbers of failures will lead 
to a smaller convergence range. In [ 121 and [ 131, the 
basic continuation method has been shown not to require 
a very good seed value to converge to the desired 
optimum. 

Figures 3 through 5 show the error caused individually 
by sensor bias, noise, and placement error. Three joints, 
2.5. and 6, were assumed failed. The following plots 
include an error of [-0.1 -0.08 0.11 radian in the initial 
joint position of the failed joints. The accelerometer 
bias varied from axis to axis with magnitudes of - 
0.2973m/s2 to 0.2949m/s2. The accelerometer error due 
to noise ranged in magnitude from -0.4039m/s2 to 
0.4285 m/s2. Accelerometer placement error ranged 

from 50mm to -50mm. All simulations used 
As0.333333. This choice of A a  implies 3 function 
and gradient calls per solution. 

I 

Figure 3: Response to accelerometer bias (Joint 2 error 
is solid line, Joint 5 is dash-dot, Joint 6 is dotted) 
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Figure 4: Response to accelerometer noise (Joint 2 error 
is solid line, Joint 5 is dash-dot, Joint 6 is doted) 
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Figure 5: Response to accelerometer placement error 
(Joint 2 error is solid line, Joint 5 is dash-dot, Joint 6 is 
-1 



To show the effect of a combination of sensor errors, 
Fig. 6 shows the response to sensor bias, noise, and 
placement errors. For variety, the same trajectory was 
used but joints 1.4, and 7 were assumed failed. An 
initial position error of rO.10.12 -0.051 radian was used 
for the failed joints. The same accelerometer bias and 
placement errors were used as in earlier simulations 
along with similar noise amplitude. It should be noted 
that the accelerometer configuration need not be altered 
to provide fault tolerance for the different set of failed 
joints. 

I 
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Figure 6: Response to accelerometer biasis, noise, and 
placement error (Joint 1 error is solid line, Joint 4 is 
dash-dot, Joint 7 is dotted) 

As with all sensor based methods, better data will 
produce better results. 

5.2 Solution existen= 

Given a specific set of operational joint sensors, 
accelerometers, and a joint trajectory, the joint positions 
may or may not be recoverable. As discussed earlier, 
simple comparison of the number of equations and 
unknowns is not sufficient. Along certain uajectories. 
equations may not be unique due to accelerometer 
alignment or other numerical problems. Even when a 
certain situation is solvable in the ideal case, it may be 
too sensitive to sensor error to yield a reasonable 
solution. It may also be too sensitive to small 
parameter changes for the chosen solution method to 
converge quickly, if ever. 

The proposed method to determine whether a sensor 
configuration and joint trajectory are solvable is 
inspection of the condition number of the gradient used 
by the solution. This usage is based on the application 
of condition numbers in linear algebra[ 171. 

Ideally, a proposed trajectory and configuration is 
evaluated off-line. If acceptable condition numbers are 
produced along the trajectory, the trajatory will be 
given to the robot to execute. The main problem is 
determining what constitutes an acceptable condition 
number. Figure 7 shows what occurs to the gradient's 
condition number as failures occur. All plots assumed 
noise free accelerometers in ideal locations but did 
include the sensor bias used in previous simulations. 

Figure 7: Condition number of gradient matrix with 
1,2,3, and 4 failures. (1 failure is solid, 2 failures is 
dash-dot, 3 failures is dotted, 4 failures is dashed) 

The error of joint 2 associated with each condition 
number is show in Fig. 8. 
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Figure 8: Error in joint 2 during 1,2,3, and 4 failures. ( 1  
failure is solid, 2 failures is dash-dot, 3 failures is dotted, 
4 failures is dashed) 

Examining Figs. 7 and 8, the position error of joint 2 is 
relatively small for 1,2, and 3 failures. These failures 
have gradient condition numbers of <1500. With 4 
failures, the error is still acceptable, but is becoming 



significantly worse. While the condition number 
between 0.2 and 0.7 seconds is low, it maintains an 
average close to 3000. Although not shown in the 
figures, five failures leads to an unacceptable position 
error which peaks at -1.4 radians. The condition number 
during 5 failures has values above lo6 and an average 
above lo5. It is suggested that an average condition 
number of below 2000 be used as a cutoff for trajectory 
solvability. This number can be relaxed if more robust 
solution techniques (at the cost of computational 
complexity) and better Bccelerometen are utilized. 
Further familiarization with a specific group of 
trajectories can also allow the designer to be confident 
with higher condition numbers in the area of known 
solvable trajectories. 

As seen in the previous plots, for systems with 
reasonable condition numbers, the proposed solution 
method shows bounded error response to bounded sensor 
errors. The same cannot be stated for integration based 
techniques. A classical technique for end effector 
tracking uses double integration of accelerometer 
readings to obtain Cartesian position. Any sensor error 
will accumulate quickly in this technique. As a result, 
the method can only be applied for short periods. The 
proposed technique can be applied indefinitely. 

There are techniques that can be used to enhance the 
solvability of the equations. These include: 

Engage joint brakes to eliminate joint velocity and 
acceleration components. This can be used to 
improve the initial position estimate before 
executing a controlled move. 
Lower desired velocities and accelerations of the 
system. Low energies imply lower conuibution of 
non-acceleration field components on the system 
Take into account the condition number of the 
gradient as a penalty function for designing the 
trajectory thereby producing a more robust trajectory 
for the solution method. 
Check for noise and bias in the sensor data during 
periods where all sensors are operational. Filter 
coefficients identified during this period could be 
used to improve the accelerometer data during Sensor 
failure. 

7. CONCLUSIONS 

This paper has discussed a method using Cartesian 
accelerometers to recover joint position sensor 
information lost during failure. A solution technique, 
continuation minimax, was proposed to solve the 

required nonlinear equations in real-time. A recursive 
technique to calculate the function gradient required for 
solving the nonlinear equations was detailed. 
Simulations were presented showing the response of the 
technique to non-ideal sensor data. It was shown that a 
set of accelerometers can protect against different sets of 
sensor failures throughout the robot system. By not 
utilizing integration in the solution method, this method 
neutralizes the concern of accumulating error in using 
accelerometers to produce position related information. 
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